Math 115
Spring 2018
Lecture 28

$$
\begin{aligned}
& 3 a^{2}+10^{2}=c^{2} ? \\
& y=m x+b d=r t
\end{aligned}
$$

Review:
(1) Simplify: $\frac{x^{2}-4}{2 x^{2}-3 x-2}=\frac{(x+2)(x-2)}{(2 x+1)(x-2)}$

$$
=\frac{x+2}{2 x+1}
$$

(2) Find all excluded values: $\frac{3 x-5}{3 x^{2}+5 x-8}$

$$
\begin{array}{ll}
\begin{array}{l}
\text { Dent }=0 \\
\text { Solve }
\end{array} & 3 x^{2}+5 x-8=0 \\
a x^{2}+b x+c=0 \\
a=3, b=5, c=-8 & x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
b^{2}-4 a c=(5)^{2}-4(3)(-8)=25+96=121 & x=\frac{-5 \pm \sqrt{121}}{2(3)} \\
& x=\frac{-5+11}{6}, x=\frac{-5-11}{6} \\
x=\frac{6}{6} \quad x=\frac{-16}{6} & x=\frac{-5 \pm 11}{6} \\
x=1 & x=\frac{8}{3} \quad \text { E.V.: }-\frac{8}{3}, 1
\end{array}
$$

Simplify:

$$
\begin{aligned}
& \frac{2 x^{2}+x-6}{2 x^{2}-9 x+9} \cdot \frac{x^{2}-2 x-3}{x^{2}-1} \\
& =\frac{(2 x-3)(x+2)}{(2 x-3)(x-3)} \cdot \frac{(x+1)(x-3)}{(x+1)(x-1)} \\
& =\frac{x+2}{x-1}
\end{aligned}
$$

Simplify:

$$
\begin{aligned}
& \frac{3 x^{2}-x}{6 x^{2}+15 x} \div \frac{6 x^{2}+x-1}{2 x^{2}-5 x-25} \\
= & \frac{3 x^{2}-x}{6 x^{2}+15 x} \cdot \frac{2 x^{2}-5 x-25}{6 x^{2}+x-1} \\
= & \frac{x(3 x-1)}{3 x(2 x+5)} \cdot \frac{(2 x+5)(x-5)}{(2 x+1)(3 x-1)}=\frac{x-5}{3(2 x+1)}
\end{aligned}
$$

Simplify

$$
\begin{aligned}
& \frac{x^{2}-4 x}{x^{2}+3 x+2}+\frac{5 x}{x^{2}+3 x+2} \\
& =\frac{x^{2}-4 x+5 x}{x^{2}+3 x+2}=\frac{x^{2}+x}{x^{2}+3 x+2} \\
& =\frac{x(x+1)}{(x+2)(x+1)}=\frac{x}{x+2}
\end{aligned}
$$

Simplify

$$
\begin{aligned}
& \frac{x}{x^{2}-4}-\frac{3}{x^{2}-x-2} \\
= & \frac{x(x+1)}{(x+2)(x-2)(x+1)}-\frac{3(x+2)}{(x-2)(x+1)(x+2)} \\
= & \frac{x(x+1)-3(x+2)}{\frac{(x+2)(x-2)(x+1)}{L C D}}=\frac{x^{2}+x-3 x-6}{(x+2)(x-2)(x+1)} \\
= & \frac{x^{2}-2 x-6}{(x+2)(x-2)(x+1)}
\end{aligned}
$$

Simplify:

$$
\begin{aligned}
& \frac{9}{x^{2}+9 x+18}-\frac{4}{x+6}-\frac{3}{x+3} \\
& =\frac{9}{(x+3)(x+6)}-\frac{4(x+3)}{(x+6)(x+3)}-\frac{3(x+6)}{(x+3)(x+6)} \\
& =\frac{9-4(x+3)-3(x+6)}{(x+3)(x+6)}=\frac{9-4 x-12-3 x-18}{(x+3)(x+6)} \\
& =\frac{-7 x-21}{(x+3)(x+6)} \\
& =\frac{-7(x+3)}{(x+3)(x+6)} \\
&
\end{aligned}
$$

Simplify:

$$
\begin{aligned}
& \frac{x}{x-2}+\frac{3}{x+2}-\frac{8}{x^{2}-4} \\
= & \frac{x(x+2)}{(x-2)(x+2)}+\frac{3(x-2)}{(x+2)(x-2)}-\frac{8}{(x-2)(x+2)} \\
= & \frac{x(x+2)+3(x-2)-8}{(x-2)(x+2)}=\frac{x^{2}+2 x+3 x-6-8}{(x-2)(x+2)}=\frac{x^{2}+5 x-14}{(x-2)(x+2)} \\
= & \frac{(x+7)(x-2)}{(x-2)(x+2)}=\frac{x+7}{x+2}
\end{aligned}
$$

Complex Fraction: It is a fraction that contains at least one fraction.

$$
\begin{aligned}
& \frac{4-\frac{2}{3}}{5}, \frac{\frac{3}{5}-\frac{1}{2}}{\frac{7}{10}}, \frac{x-\frac{4}{x}}{1-\frac{2}{x}} \\
& \frac{\frac{x+5}{x-2}-\frac{x}{x+6}}{\frac{8}{x^{2}+4 x-12}}
\end{aligned}
$$

To Reduce / Simplify Complex fraction, (1) find LCD of all denominators
(c) Multiply everything by LCD.
(3) Simplify, Simplify, and Simplify $\begin{aligned} & \begin{aligned} & \text { Simplify } \\ & \frac{3-\frac{1}{2}}{\frac{3}{4}}= \\ & L C D=4\end{aligned}=\frac{4 \cdot 3-4 \times \cdot \frac{1}{2}}{4 \cdot \frac{3}{4}}=\frac{12-2}{3} \\ &=\frac{10}{3}\end{aligned}$

Simplify

$$
\begin{aligned}
\frac{x-\frac{4}{x}}{1-\frac{2}{x}}=\frac{x \cdot x-x \cdot \frac{4}{x}}{x \cdot 1-x \cdot \frac{2}{x}} & =\frac{x^{2}-4}{x-2} \\
\text { LCD }=x & =\frac{(x+2)(x-2)}{x-2}=x+2
\end{aligned}
$$

Simplify:

$$
\begin{aligned}
& \frac{1+\frac{4}{x}-\frac{5}{x^{2}}}{1-\frac{25}{x^{2}}}=\frac{x^{2} \cdot 1+x^{2} \cdot \frac{4}{x}-x^{2} \cdot \frac{5}{x^{2}}}{1 \cdot x^{2}-x^{2} \cdot \frac{25}{x^{2}}} \\
& L C D=x^{2} \\
&=\frac{x^{2}+4 x-5}{x^{2}-25} \\
&=\frac{(x+5)(x-1)}{(x+5)(x-5)} \\
&=\frac{x-1}{x-5}
\end{aligned}
$$

Simplify:

$$
\begin{aligned}
& \frac{\frac{3}{x+2}-4}{\frac{2}{x+2}+1}=\frac{(x+2) \cdot \frac{3}{x+2}-(x+2) \cdot 4}{(x+2) \cdot \frac{2}{x+2}+(x+2) \cdot 1} \\
& L C D=(x+2) \\
&=\frac{3-4(x+2)}{2+x+2} \\
&=\frac{3-4 x-8}{x+4}=\frac{-4 x-5}{x+4}
\end{aligned}
$$

Simplify:

$$
\begin{aligned}
& \frac{6+\frac{3}{x}}{\frac{x}{4}+\frac{1}{8}}=\frac{8 x \cdot 6+8 x x \cdot \frac{3}{x}}{28 x \cdot \frac{x}{4}+6 x \cdot \frac{1}{8}} \\
& \begin{aligned}
L C D=8 x
\end{aligned} \\
& =\frac{48 x+24}{2 x^{2}+x} \\
& \\
& =\frac{24(2 x+1)}{x(2 x+1)} \\
&
\end{aligned}
$$

Solving Rational Equations:
(1) find LCD \&e all excluded Values
(2) Multiply everything by LCD to clear all fractions.
(3) Solve the new equation.
(4) Only keep those answers that are not excluded values.

Solve

$$
\frac{x}{2}-\frac{x-1}{3}=1
$$

$L C D=6$, E.V.: None

$$
\begin{gathered}
6 \cdot \frac{x}{2}-6 \cdot \frac{x-1}{3}=6 \cdot 1 \\
3 x-2(x-1)=6 \\
3 x-2 x+2=6 \\
x+2=6 \\
x=4
\end{gathered} \quad\{4\}
$$

Solve $\frac{3}{4} x=\frac{1}{2}+\frac{2}{3} x \Rightarrow \frac{3 x}{4}=\frac{1}{2}+\frac{2 x}{3}$
$L C D=12 \quad$ E.V.: None

$$
\begin{gathered}
\begin{array}{c}
3 \\
12 \cdot \frac{3 x}{4}=12 \cdot \frac{1}{2}+12 \cdot \frac{4 x}{3} \\
9 x=6+8 x \\
9 x-8 x=6 \\
x=6
\end{array} \rightarrow\{6\}
\end{gathered}
$$

Solve

$$
\begin{gathered}
\frac{x}{x-2}-2=\frac{2}{x-2} \\
L C D=x-2 \\
(x-2) \cdot \frac{x}{x-2}-(x-2) \cdot 2=(x-2) \cdot \frac{2}{x-2} \\
x-2(x-2)=2 \\
x-2 x+4=2 \\
-x+4=2 \\
-x=2-4
\end{gathered}
$$

Solve

$$
\begin{aligned}
& \frac{4}{x+4}+\frac{2}{x-4}=\frac{2 x}{x^{2}-16} \\
& \text { LCD }=(x+4)(x-4) \quad \text { E.V. }: \pm 4 \\
& (x-4)(x-4) \cdot \frac{4}{x+4}+(x+4)(x-4) \cdot \frac{2}{x-4}=(x+4)(x-4) \cdot \frac{2 x}{x^{2}-6} \\
& 4(x-4)+2(x+4)=2 x \rightarrow 6 x-2 x=8 \\
& 4 x-16+2 x+8=2 x \\
& 4 x=8 \\
& x=2\{2\}
\end{aligned}
$$

Solve

$$
\begin{aligned}
& \frac{x}{x-4}+\frac{1}{x+4}=\frac{-8}{x^{2}-16} \\
& L C D=(x+4)(x-4) \quad, \quad E_{0} \cdot V_{0}: \pm 4 \\
& x(x+4)+1(x-4)=-8 \\
& x^{2}+4 x+x-4+8=0 \\
& x^{2}+5 x+4=0 \\
& (x+4)(x+1)=0 \\
& x+\{-1\} \\
& x^{2} \leq 4 \quad x=-1
\end{aligned}
$$

Solve:

$$
\frac{x}{x^{2}+x-2}+\frac{x}{x^{2}-1}=\frac{x}{x^{2}+3 x+2}
$$

$$
\begin{aligned}
& \frac{x}{(x-1)(x+2)}+\frac{x}{(x+1)(x-1)}=\frac{x}{(x+2)(x+1)} \\
& \text { LCD }=(x-1)(x+2)(x+1)
\end{aligned}
$$

$$
\begin{aligned}
& x(x+1)+x(x+2)=x(x-1) \\
& \begin{array}{l}
x^{2}+x+x^{2}+2 x=x^{2}-x \\
x^{2}+3 x+x=0 \\
x^{2}+4 x=0 \\
x(x+4)=0
\end{array} \quad \begin{array}{rr}
\{-4,0\} \\
x+4=-4 \\
x+1
\end{array}
\end{aligned}
$$

